
An application of Seeley's method in two dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 3199

(http://iopscience.iop.org/0305-4470/20/11/023)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 19:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 20 (1987) 3199-3207. Printed in the U K  

An application of Seeley’s method in two dimensions 
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Received 30 September 1986 

Abstract. Using Seeley’s method a systematic determination of G(x, y ;  w )  for the equation 
(-V:+wZ)G(x,y; w )  = S ( x - y ) ,  ( x , y ~  r), is carried out for Dirichlet and Neumann boun- 
dary conditions. The region r is taken to be two dimensional with an arbitrary smooth 
boundary dr. An asymptotic expansion of Tr GB for large w is obtained, where GB is the 
boundary contribution to G. Using these results an earlier disagreement between Durhuus 
et a /  and McKean and Singer is resolved and errors in certain coefficients of Tr GB obtained 
by Pleijel are noted. 

1. Introduction 

In order to calculate determinants in string theory Durhuus et a1 (1982) had to study 
the operator e-A‘ where A was a second-order elliptic differential operator in two 
dimensions. Using an elegant method due to Seeley (1969) they obtained expressions 
for the kernel of e-A‘ for both Dirichlet and Neumann boundary conditions. However, 
the results obtained were in disagreement with previous results of McKean and Singer 
(1967). An essential step in the application of Seeley’s method is to ensure that the 
space on which A is defined is the upper half-plane such that the boundary is a straight 
line. 

In this paper we show that by a careful application of Seeley’s method where we 
first map the two-dimensional region r with arbitrary boundary ar into the upper 
half-plane such that the boundary is a straight line we obtain results which agree with 
McKean and Singer. This resolves the above disagreement which arose because 
sufficient attention was not paid to the geometry of the problem before Seeley’s method 
was applied. Smith (1981) also studied the two-dimensional Dirichlet problem and 
developed a method for calculating Tr e-A‘. Our results agree with those of Smith. 

In our application of Seeley’s method we obtain an expression for the Green 
function G ( x , y ;  w )  of the Helmholtz operator ( - V $ + w ’ )  for both Dirichlet and 
Neumann boundary conditions. We then obtain an asymptotic expansion of Tr GB 
for large w,  where GB is the boundary contribution to G. Tr GB has been calculated 
using a different approach by Pleijel (1954). The results we obtain for the Dirichlet 
case agree with those of Pleijel except for the sign of the third term. This sign error 
of Pleijel was noted by Stewartson and Waechter (1971) who studied the Dirichlet 
problem for a region with circular boundary dr and our results confirm this as well. 
The results we obtain for the Neumann case agree with those of Pleijel except for the 
coefficient of the third term. 
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The layout of the paper is as follows. In 9 2 we discuss the geometry of the problem 
and show how the two-dimensional region r with boundary ar can be mapped into 
the half-plane (as far as boundary effects are concerned). In 9 3 we determine G(x, y; w )  
for both Dirichlet and Neumann boundary conditions and Tr GB is computed. We 
also present our conclusions in 9 3. 

2. The geometry of the problem 

In this section we consider the geometry of the problem which is an essential step 
before applying the method of Seeley. A readable account of Seeley's method is given 
by Durhuus er a1 (1982) and our treatment and notation are based on their paper. A 
good account of the pseudo-differential calculus is given by Gilkey (1974). 

Consider a region r in two-dimensional Euclidean space R2 with an arbitrary 
smooth (= C") boundary aT. We choose Cartesian coordinates in R2 with x = (x i ,  x2) E 

R2 and flat metric 8, with the line element given by ds2=  (dx1)2+(dx2)2. 
We consider the coordinates in the neighbourhood of the boundary dT. Consider 

a strip along the interior of aT of height h > 0. If h is sufficiently small we can take 
(s, r )  as defining a local Cartesian coordinate system on aT, where s is the arc length 
along aT and r is the inner normal distance. The strip along aJ? is then mapped into 
a strip along the s axis of the (s, r )  plane. The boundary ar is then given by 

ar={(S ,  r ) l r = o }  (2.1) 

r={(S, r ) l r 2 0 } .  (2.2) 

with 

Having transformed coordinates from (x i ,  x2) to (s, r )  we now need to find the Jacobian 
of this transformation. To do this we consider the diagram shown in figure 1. We have 

d x = d x '  t^(s)+x2fi(s) (2.3) 

t 

I / 

Figure 1. Transformation of coordinates in the neighbourhood of the boundary. 
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with respect to the origin y ( s )  = 0. We also have 

dx = y ( s  + ds)  + & ( s  +ds)  (2.4) 

with respect to the origin y ( s  + ds) .  We take ds  to be small so that we retain only 
O(ds) terms. However, we note that x2 and r need not be small. Using the Serret-Frenet 
formulae (Klingenberg 1978) in (2.4) we find 

dx’ = ( 1  - rc( s ) )  ds x 2 =  r dx2 = dr  (2.5) 

where c ( s )  is the curvature of dT at s. Therefore the Jacobian is given by 

J ( s ,  r )  = ( 1  - r c ( s ) ) .  (2.6) 

Using (2.5) we find the metric tensor in the ( s ,  r )  coordinate system is given by 

O )  1 
g, = ( ( 1  - rC(s))2 

0 

and the Laplacian expressed in terms of ( s ,  r )  takes the form 

1 a’ rc’ (s )  a a’ c ( s )  a 
J 2  as J 3  as ar’ J ar’ 

v $ = -  2+- -+--- - 

(2.7) 

Now consider our original equation 

( - V ~ I , ~ ~ + W ’ ) G ( X ’ ,  x’; w )  = S(X’)S(X’) (2.9) 

where we take x = (XI, x2) and y = ( y ’ ,  y ’ )  = (0,O). We need to see how this equation 
is affected by the transformation (XI, x2) + ( s ,  r ) .  First, the delta function transforms as 

Let 

G(x’, x’; w )  = G(x’(s, r), x2(s, r ) ;  w )  = C(s, r ;  w ) .  

Then the transformation of (2.9) is given by 

where ( - V f , , )  is given by (2.8). We define 

so that we can write (2.12) as 

( - J ~ ; , , J - ’ + W ~ ) H ( S ,  r; w )  = G ( s ) S ( r ) .  

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

The reason we carry out the above steps is that we want to regard ( - J V f , J - ’ + w 2 )  as 
an operator depending on the parameter w and then construct the symbol of the inverse 
operator, denoted by a [ ( - J V f , , J - ’  + w 2 ) - ’ ] ,  according to the method of Seeley. 
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Using (2.6) and (2.8) we obtain 

1 a’ 3rc’ (s )  a C ( S )  a 
J 3  as J ar 

( - J V 2  J - ’ ) =  + S. r ( J’as’ ar’ ’’) ( 

We can then write the symbol of the operator ( - J V ? , , J - ’ +  w’ )  as 

L 

u ( - ~ ~ : , , ~ - ’ + w 2 ) =  a j ( s , r , 6 , 7 , w )  
j = O  

where 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

with 

and 

(2.21) 

We now consider the boundary conditions of the problem in terms of the new variables 
(s, r ) .  Since the boundary is now given by (2.1) we have 

- 
= O  on r = 0 (Dirichlet) (2.22) H ( s ,  r ;  0) 

J ( s ,  r )  
G(s, r ;  U )  = 

and 

D&S, r ;  w )  = D,. on r = 0 (Neumann). (2.23) 

We write the Green function as a separation 

~ ( s ,  r ;  w )  = ~ ‘ ( s ,  r ;  w )  - H ~ ( s ,  r ;  w )  (2.24) 

where Ho(s ,  r ;  w )  is the Green function for the infinite plane when no boundary 
conditions are imposed and HB(s, r ;  w )  is the compensating part due to the presence 
of the boundary ar and is defined on the half-plane (2.2). The boundary conditions 
then take the following form: 

B H B ( s ,  r ;  U )  = BHo(s ,  r ;  U )  on r = O  (2.25) 
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with 

B = Z  (Dirichlet) (2.26) 

B = ( D ,  + Z )  (Neumann). (2.27) 

The remaining boundary condition is 

~ ~ ( s ,  r ;  W ) + O  as r + w .  (2.28) 

Since we anticipate that HB(s, r ;  U )  will be significant only near the boundary (i.e. 
close to r = 0) we look for solutions which fall off as we move away from dT. The 
boundary condition (2.28) is just a statement of this fact. 

Once we have constructed the symbol of the inverse operator ( - J V s , , J - ’  + w 2 ) - ’  
according to the method of Seeley we can write down expressions for the Green 
functions as follows (Durhuus et a1 1982): 

H ( s ,  r ;  s’, r ’ ;  w )  

= ~ ‘ ( s ,  r ;  s’, r’; w )  - ~ ~ ( s ,  r ;  s‘, r’; w )  

m 

= ( 2 ~ ) ~ ~  exp[i(s -s ’ )5]  exp[i(r- r ’ ) ~ ]  c - ~ - / ( s ,  r, 5, 7, w )  d5 dT I j = O  

00 

- ( 2 ~ ) - ~  exp[i(s - s’)e]  exp(-ir’T) 1 d-2 - j ( s ,  r, & T ,  w )  d5  d.r I j = O  

(2.29) 

where c-2-j  and d-2- j  ( j  = 0 ,1 ,2 ,  . . . ) are symbols defined by Durhuus et al (1982). 
We note the important point here is the absence of a factor elrr in the expression for 
HB. This arises because when we construct the symbols d-2- j  we Fourier transform 
in the s direction only which leads to differential equations for d-2-1. When we solve 
these equations we find that the d-2- j  obtain their T dependence solely from the 
boundary condition at r = 0. Then when we define the operator D-2-I corresponding 
to the symbol d-2- j  we take the Fourier transform at r = 0 (Durhuus et al 1982, Seeley 
1969). We also note that at each stage of the approximate determination of H given 
by (2.29) the boundary conditions are exactly satisfied. 

Using (2.5), (2.13) and (2.29) we obtain the following expression for Tr G B  defined 
by 

Tr G B =  d2xGB(x, x; w )  = ds d r  HB(s, r ;  w )  I, 
where 

H ~ ( s ,  r ;  w ) =  ~ ~ ( s ,  r ;  s, r ;  w ) .  (2.31) 

We see therefore that the objects which we need to find are the symbols c-2-j  and 
d-2-l. The form of these symbols depends on the operator which we are studying, 
namely ( - J V : , , J - ’  + U’ ) ,  and also on the boundary conditions. 
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3. Results and conclusions 

In this section we determine the first three terms in the series expansion for the Green 
function H defined by (2.29) for both Dirichlet and Neumann boundary conditions. 
We then use the symbols d-z - j  ( j  = 0, 1,2) to evaluate Tr G B  given by (2.30) as an 
asymptotic expansion for large w. Our conclusions are then presented. 

The Green function Ho(s,  r ;  s’, r’; w )  given by (2.29) is defined via the symbols 
c-,-~ for which we obtain the following results: 

c-* = ( T~ + A2)-’ (3.1) 

A* = ( ~ ~ ~ 5 ~ +  @’) (3.2) 

where 

(3.3) 

(3.4) 

The Green function HB(s, r ;  SI, r‘; w )  given by (2.29) is defined via the symbols d-,-j  
for which we obtain the following results. 

The Dirichlet case 
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where 

A i =  A’(r = 0) = (t2+ w 2 )  

3205 

(3.6) 

-4i7t2c(s)  irc(s)  ( ( T ~ + A ~ ) ~  ( r 2 + A i ) ’  
+ d P 3  = exp(-rAo) 

(3.7) 

c 2 ( s )  8 c 2 ( s ) t 2  8c2(s ) t4  - ~ c ~ ( s ) T ~  +36c2(s)7’t2 
( T~ + Ai)’ - (T ’+ A;)3+ ( T~ + Ai), ( r2  + Ai)’ ( r2  + A;), d - ,  = exp(-rAo)( 

48c2( s)7’t4 8c’( s)75 16d( S )  T t 3 )  

( T ~ +  Ai)’  (7’+ Ai)3 ( T’+ Ai) ,  

exp(-rAo)( 8Ai(  7’ + A;) - 4 A i (  T~ + A i )  8A0( 7‘ + A i )  A i (  T~ + Ai)3  

+ - - 

5 C 2 ( S ) t 4  3 c 2 ( s ) t 2  + c2(s) + 2i c2( s ) 75, 

- -  - ic2( s) 7t2 i c ‘ ( s ) t  
2 A o ( ~ 2 + A ~ ) 2 + 2 A o ( r 2 + A ~ )  2 A i ( ~ ~ + A i )  

+ r4 exp( - rAo) 

The Neumann case 

i r  exp(-rA,) 
d - z = -  

A,( r2  + A;) 

i7c(s ) t2  c (s ) ir  4 s )  - i r c ( s )  
(2A:(r2+Ai) 2 ~ 4 i ( r ~ + A ; ) - & , ( ~ ~ + A i )  A;(r2+Ai)  

d-3  = exp( - rho) + 
4‘T2C(S)5’ T 2 C ( S )  - 

A,( r 2 +  Ai)3+Ao(  7’+ A ; ) 2 f A 0 ( ~ 2 +  Ai)2  

i rc (s  ) t2 i r c ( s )  
+ exp(-rAo)( 2A;( r2  + A i )  + 2A0( r2 + A i )  

(3.8) 

(3.9) 

(3.10) 
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7 i ~ c ’ ( s ) 5 ~  + 5i7c2(s)t2 3i7c2(s) c2( s ) 5, d-, = exp( - rho)  - ( 8Ai( 7’ + A i )  4Ai( 72 + A i )  - 8A;( T~ + A i )  - A;( T~ + Ai)’ 

3i7’c2( s) - 36i7’c2( s ) t 2  48i7’c2( s ) t 4  
A,( T~ + Ai)’ A,( T’ + Ai), + A,( r2  + Ai)’ 

+ 

2ic’(s)Y3 - 3ic‘(s)5 4ic’(s)Y3 + 8i7’c’(s)5 
A;( 7’ + Ai)’ A,( T’ + Ai)’+ A,( T’ + Ai)’ A,( T’ + Ai)’ 

+ 
7i w2( s) 5‘ 3i W2( s ) 5’ - 16i~’c‘( s ) t ’ )  + r exp( -rAo) - + 

A,( T’ + Ai), ( SA:( T~ + A i )  4&( T’ + A i )  

7 i ~ c ’ ( s ) 5 ~  3iw2( s ) t 2  iTc’(s) + r2 exp( - rAo) - + + ( ~ A : ( T ’ + A ~ )  4A;(.r2+Ai) 8AO(.r2+Ai) 

(3.11) 

Using the symbols d-2-j  ( j  = 0,1,2) we can now evaluate the quantity Tr GB given by 
(2.30) as an asymptotic expansion in powers of (6’) for large W .  The order of 
integration which we adopt is (7, r, 5, s). We note here that the terms in d-, Dirichlet 
and d-, Neumann which are proportional to c’(s) are also odd functions of 5. Since 
we need to perform a 5 integration over the range (-CO, CO) we can neglect these terms 
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when evaluating Tr GB. We obtain the following results: 

Tr G B = - - y  c ( s )  d s - 7  c 2 ( s )  d ~ + O ( w - ~ )  (Dirichlet) s 1  1 

8w 12rw Idr 5 1 2 ~  I,, 
(3.12) 

(Neumann) 
-s 1 5 
8w 1 2 m ~ ~ [ ~ ~  

TrGB=--- c 2 ( s )  d ~ + O ( w - ~ )  

(3.13) 

where S is the length of the boundary dF. These results agree with those obtained by 
Pleijel (1954) except for the coefficients of the jar c 2 ( s )  ds term for the Dirichlet and 
Neumann problems. Pleijel obtained (+&U-,, - & w - ~ )  as the coefficients of the 
Dirichlet and Neumann problems, respectively. The sign error of Pleijel in the Dirichlet 
case was noted by Stewartson and Waechter (1971) who performed the calculation for 
a region r with circular boundary X. Therefore our result agrees with that of Stewartson 
and Waechter. 

Using the asymptotic expansions (3.12) and (3.13) it is possible to obtain asymptotic 
expansions of Tre-A' as t+0+ where A is the Laplacian ( -V2)  (Stewartson and 
Waechter 1971). The resulting expansions are then in agreement with those obtained 
by McKean and Singer (1967) and also by Smith (1981). 

The symbols c-', c-,, c - ~ ,  d - ,  and d - ,  for both the Dirichlet and'Neumann problems 
were constructed earlier by Durhuus et a1 (1982). Our results agree with the above 
except for the symbol d- ,  in the Neumann case. The source of this disagreement can 
be traced to the fact that the boundary operator which we have used in the Neumann 
case, namely (2.27), is different from that used by Durhuus et al. Consequently, we 
have two extra terms in d- ,  , namely exp( - TAo)[ -c( s) /  ( Ao( 72 + At)] and 
exp( -rAo)[ -i7c( s ) /At(  72 + At)]. Our result for d- ,  agrees with the expression obtained 
by Durhuus et a1 apart from these two terms. The reason the boundary operator used 
by us is different is as follows. We recall from 0 2 that when we performed the 
coordinate transformation (x', x') + (s, r )  we also had to transform our basic equation 
(2.9). This led us to define 6 ( s ,  r ;  w )  = H ( s ,  r ;  w ) / J ( s ,  r )  and consequently the 
Neumann boundary condition led to the boundary operator B = (D,-ic(s)Z). As 
discussed in 0 2 this transformation of the problem to one involving a local Cartesian 
coordinate system (s, r ) ,  where the boundary ar was a straight line, was an essential 
step before applying the method of Seeley. 

Finally it should be apparent that once G ( x , y ;  0) is determined many problems 
can be tackled. For instance, we can proceed to do cavity field theory and use G(x, y ;  w )  
to construct propagators that can be used to write down the Feynman rules for field 
theory in a cavity. It is also possible to generalise the procedure to higher dimensions. 
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